Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38586022

RESUMO

Fusicoccadiene synthase from P. amygdala (PaFS) is a bifunctional assembly-line terpene synthase containing a prenyltransferase domain that generates geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate (DMAPP) and three equivalents of isopentenyl diphosphate (IPP), and a cyclase domain that converts GGPP into fusicoccadiene, a precursor of the diterpene glycoside Fusicoccin A. The two catalytic domains are linked by a flexible 69-residue polypeptide segment. The prenyltransferase domain mediates oligomerization to form predominantly octamers, and cyclase domains are randomly splayed out around the prenyltransferase core. Previous studies suggest that substrate channeling is operative in catalysis, since most of the GGPP formed by the prenyltransferase remains on the protein for the cyclization reaction. Here, we demonstrate that the flexible linker is not required for substrate channeling, nor must the prenyltransferase and cyclase domains be covalently linked to sustain substrate channeling. Moreover, substrate competition experiments with other diterpene cyclases indicate that the PaFS prenyltransferase and cyclase domains are preferential partners regardless of whether they are covalently linked or not. The cryo-EM structure of engineered "linkerless" construct PaFSLL, in which the 69-residue linker is spliced out and replaced with the tripeptide PTQ, reveals that cyclase pairs associate with all four sides of the prenyltransferase octamer. Taken together, these results suggest that optimal substrate channeling is achieved when a cyclase domain associates with the side of the prenyltransferase octamer, regardless of whether the two domains are covalently linked and regardless of whether this interaction is transient or locked in place.

2.
J Struct Biol ; 216(1): 108060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184156

RESUMO

Copalyl diphosphate synthase from Penicillium fellutanum (PfCPS) is an assembly-line terpene synthase that contains both prenyltransferase and class II cyclase activities. The prenyltransferase catalyzes processive chain elongation reactions using dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate to yield geranylgeranyl diphosphate, which is then utilized as a substrate by the class II cyclase domain to generate copalyl diphosphate. Here, we report the 2.81 Å-resolution cryo-EM structure of the hexameric prenyltransferase of full-length PfCPS, which is surrounded by randomly splayed-out class II cyclase domains connected by disordered polypeptide linkers. The hexamer can be described as a trimer of dimers; surprisingly, one of the three dimer-dimer interfaces is separated to yield an open hexamer conformation, thus breaking the D3 symmetry typically observed in crystal structures of other prenyltransferase hexamers such as wild-type human GGPP synthase (hGGPPS). Interestingly, however, an open hexamer conformation was previously observed in the crystal structure of D188Y hGGPPS, apparently facilitated by hexamer-hexamer packing in the crystal lattice. The cryo-EM structure of the PfCPS prenyltransferase hexamer is the first to reveal that an open conformation can be achieved even in the absence of a point mutation or interaction with another hexamer. Even though PfCPS octamers are not detected, we suggest that the open hexamer conformation represents an intermediate in the hexamer-octamer equilibrium for those prenyltransferases that do exhibit oligomeric heterogeneity.


Assuntos
Alquil e Aril Transferases , Dimetilaliltranstransferase , Penicillium , Humanos , Dimetilaliltranstransferase/genética , Penicillium/genética , Proteínas de Plantas/genética
3.
Genes Dev ; 37(7-8): 321-335, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37024283

RESUMO

Several rRNA-modifying enzymes install rRNA modifications while participating in ribosome assembly. Here, we show that 18S rRNA methyltransferase DIMT1 is essential for acute myeloid leukemia (AML) proliferation through a noncatalytic function. We reveal that targeting a positively charged cleft of DIMT1, remote from the catalytic site, weakens the binding of DIMT1 to rRNA and mislocalizes DIMT1 to the nucleoplasm, in contrast to the primarily nucleolar localization of wild-type DIMT1. Mechanistically, rRNA binding is required for DIMT1 to undergo liquid-liquid phase separation, which explains the distinct nucleoplasm localization of the rRNA binding-deficient DIMT1. Re-expression of wild-type or a catalytically inactive mutant E85A, but not the rRNA binding-deficient DIMT1, supports AML cell proliferation. This study provides a new strategy to target DIMT1-regulated AML proliferation via targeting this essential noncatalytic region.


Assuntos
Leucemia Mieloide Aguda , Metiltransferases , Humanos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Leucemia Mieloide Aguda/genética , Metiltransferases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/metabolismo
4.
Cancer Discov ; 9(3): 416-435, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30626590

RESUMO

Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, and new strategies for prevention and treatment are urgently needed. We previously reported that histone H4 acetylation is elevated in pancreatic acinar cells harboring Kras mutations prior to the appearance of premalignant lesions. Because acetyl-CoA abundance regulates global histone acetylation, we hypothesized that altered acetyl-CoA metabolism might contribute to metabolic or epigenetic alterations that promote tumorigenesis. We found that acetyl-CoA abundance is elevated in KRAS-mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM). Pancreas-specific loss of the acetyl-CoA-producing enzyme ATP-citrate lyase (ACLY) accordingly suppresses ADM and tumor formation. In PDA cells, growth factors promote AKT-ACLY signaling and histone acetylation, and both cell proliferation and tumor growth can be suppressed by concurrent BET inhibition and statin treatment. Thus, KRAS-driven metabolic alterations promote acinar cell plasticity and tumor development, and targeting acetyl-CoA-dependent processes exerts anticancer effects. SIGNIFICANCE: Pancreatic cancer is among the deadliest of human malignancies. We identify a key role for the metabolic enzyme ACLY, which produces acetyl-CoA, in pancreatic carcinogenesis. The data suggest that acetyl-CoA use for histone acetylation and in the mevalonate pathway facilitates cell plasticity and proliferation, suggesting potential to target these pathways.See related commentary by Halbrook et al., p. 326.This article is highlighted in the In This Issue feature, p. 305.


Assuntos
Acetilcoenzima A/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Acetilação , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Feminino , Genes ras , Xenoenxertos , Histonas/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA